商学院
三角形的正弦(sine)、余弦(cos)、正切(tan)
   
 
董荣天
  被约:0
《初中汉语语法精要》作者
  查看专辑《有趣的数学》的全部文章  
决战天球商业模拟_管理人员模拟培训_创业模拟_商战模拟_MBA模拟课程

正弦(sine)

数学术语,是三角函数的一种,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。


正弦函数

一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。


正弦定理公式

a/sinA=b/sinB=c/sinC=2R。

【注1】其中“R”为三角形△ABC外接圆半径。下同。

【注2】正弦定理适用于所有三角形。初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。


正弦定理推论公式

1、(1)a=2RsinA;

(2)b=2RsinB;

(3)c=2RsinC。

2、(1)a:b=sinA:sinB;

(2)a:c=sinA:sinC;

(3)b:c=sinB:sinC;

(4)a:b:c=sinA:sinB:sinC。

【注】多用于“边”、“角”间的互化。


3、由“a/sinA=b/sinB=c/sinC=2R”可得:

(1)(a+b)/(sinA+sinB)=2R;

(2)(a+c)/(sinA+sinC)=2R;

(3)(b+c)/(sinB+sinC)=2R;

(4)(a+b+c)/(sinA+sinB+sinC)=2R。

4、三角形ABC中,常用到的几个等价不等式。

(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。

(2)“a+b>c”等价于“sinA+sinB>sinC”。

(3)“a+c>b”等价于“sinA+sinC>sinB”。

(4)“b+c>a”等价于“sinB+sinC>sinA”。

5、三角形△ABC的面积S=(abc)/4R。其中“R”为三角形△ABC的外接圆半径。

表达式:f(x)=Asin(ωx+φ)


余弦(cos)

数学术语,是三角函数的一种,在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。

余弦函数:f(x)=cosx(x∈R)

余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。


余弦定理公式

(1)a^2=b^2+c^2-2bccosA;

(2)b^2=a^2+c^2-2accosB;

(3)c^2=a^2+b^2-2abcosC。

【注】余弦定理及其推论适用于所有三角形。初中数学,三角形内角的余弦值等于“邻比斜”仅适用于直角三角形。


余弦定理推论公式

1、cosA=(b^2+c^2-a^2)/2bc;

2、cosB=(a^2+c^2-b^2)/2ac;

3、cosC=(a^2+b^2-c^2)/2ab。

三角形的正弦定理和余弦定理公式及其推论常用来解三角形。对于某些复杂题,需要把正弦定理和余弦定理及其推论综合起来运用。

【例题】已知三角形△ABC中,角A=30°,a=2,求三角形△ABC外接圆的面积。

解:设三角形ABC外接圆半径为R,

根据正弦定理得:a/sinA=2R,

所以R=a/(2sinA)=2,

所以,三角形ABC的外接圆面积S=4π。


正切(tan)

数学术语,在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。

即:在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。

即:tanA=∠A的对边/∠A的邻边。

正切定理: (a + b) / (a - b) = tan((α+β)/2) / tan((α-β)/2)

三角形的正弦(sine)、余弦(cos)、正切(tan)-有趣的数学-董荣天-五略商书
声明:该文及以下回复观点仅代表作者本人,五略商书系信息发布平台,仅提供信息存储空间服务。
转载请注明作者和出处:转自《五略商书》,作者董荣天!
1人评论,点击参与
  相关阅读
四言集(又:名贤集)全文
《三十六计》全文原文
《孙子兵法》十三篇全文,原文,孙
有趣的歇后语
三角形的正弦(sine)、余弦(
北京商书策管理咨询,专业的精益生产咨询、人力资源咨询、企业内训
约课
讲师
学院
发现
我的